From Light to Motion: Shaping surfaces with light

⤓
Researchers from the Multifunctional Materials Design group at Aalto University explored the use of photoactive materials to control surface topographies, specifically in generating photo-responsive wrinkle patterns. Azobenzene and its derivatives are employed to trigger photoisomerization reactions upon illumination, resulting in the conversion of electromagnetic energy into mechanical energy. In fact, supramolecular design is utilized to build polymer-azo complexes, allowing for easy tuning of the rate of pattern evolution at constant illumination intensity.
The study characterizes dynamic photoinduced wrinkle erasure enabled by photomechanical changes in supramolecular polymer-azo complexes via confocal microscopy. Furthermore, a MATLAB algorithm was developed to thoroughly analyze the video that captures the wrinkle erasure process. As a result, a combination of confocal microscopy and the mentioned MATLAB analysis enables a quantitative comparison of wrinkling erasure efficiency of different supramolecular materials and provides a facile way to optimize the system for specific applications.
This work provides insight into the conversion of molecular-level motion into larger scales and broadens other opportunities for tissue engineering and biological applications.
The findings were published in (Yujiao Dong, Dr. Pedro E. S. Silva, Prof. Dr. Jaakko V. I. Timonen, Prof. Dr. Jaana Vapaavuori).
The news article was prepared by Bach Nguyen (MMD / Aalto University).
Related content:
Multifunctional Materials Design
Group led by Professor Jaana Vapaavuori

SUPER-WEAR project
Super-stretchable functionalized materials and fibers for third generation wearable technology

ModelCom project
Autonomously adapting and communicating modular textiles

Read more news

New Academy Research Fellows and Academy Projects
A total of 44 Aalto researchers received Academy Research Fellowship and Academy Project funding from the Research Council of Finland – congratulations to all!
LGBTQ-Friendly Firms More Innovative
Firms with progressive LGBTQ policies produce more patents, have more patent citations, and have higher innovation quality as measured by patent originality, generality, and internationality.
Aalto University's Wood Studio's future visions of Finland's most valuable wood are presented at the Finnish Forest Museum Lusto
Curly birch – the tree pressed by the devil – exhibition will be on display in Lusto until March 15, 2026.