91ÇàÇà²Ý

Uutiset

Kaiken takana onkin vesi: polyelektrolyyttikalvojen terminen transitio dehydraatiomekanismilla

Tutkijat onnistuivat päättelemään polyelektrolyyttikalvojen termisen rakennemuutoksen mekanismin.

Polyelektrolyyttikalvo muodostuu vastakkaisvarauksisten polymeerien kasautuessa vesiliuoksessa. Niillä on jo kauan tiedetty olevan epätavallinen terminen eli lämpötilariippuva rakennemuutos, joka ilmenee lämpötilan noustessa kalvon äkillisenä, voimakkaana pehmenemisenä ja polymeerien diffuusion samanaikaisena selkeänä nopeutumisena. Kyseistä rakennemuutosta hyödynnetään muun muassa älykkäissä responsiivisissa pinnotteissa ja suodatinkalvoissa materiaalitieteen energiasovellutuksissa ja biotekniikassa esimerkiksi lääkekuljetuskapseleissa. Paremman käsitteen puuttuessa tätä rakennemuutosta on kutsuttu lasitransitioksi.

Aalto-yliopiston kemian laitoksen tutkijat ovat vastikään julkaistussa tutkimuksessaan pystyneet ensimmäistä kertaa päättelemään tämän muutoksen taustalla olevan mekanismin yhdistämällä tietokonesimulaatioista ja niitä tukevista kokeellisista mittauksista saadun tiedon.

Kaaviokuva veden merkityksestä polyelektrolyyttikalvojen lämpötilatransitiossa, jossa kalvo muuttuu transitiolämpötilassa lasimaisesta kumimaiseksi lämpötilan noustessa. Nyt julkaistussa tutkimustyössä havaittiin, että transitiolämpötilassa veden muodostamien vetysidosten elinikä ja niiden määrä laskevat; vesi ei liuota polyelektrolyytteja yhtä hyvin kuin transitiolämpötilan alapuolella. Kuva Maria Sammalkorpi

Akatemiatutkija Maria Sammalkorven tutkimusryhmän työ osoittaa, että rakennemuutoksen aiheuttaa dehydraatio, eli se on seurausta veden sitoutumisen huononemisesta materiaalissa transitiolämpötilassa. Tulokset ovat merkittäviä, koska ne kumoavat aiemmin vallalla olleen käsityksen, että transitio liittyisi muutokseen polyelektrolyyttien välisissä ionipareissa. Lisäksi havaittu dehydraatiomekanismi on ensimmäinen osoitus niin kutsutun alimman kriittisen liukenemislämpötilan transitiomekanismin eli LCST-mekanismin esiintymisestä polyelektrolyyttirakenteissa. Nyt julkaistut tutkimustyön tulokset osoittavat, että vesi-polyelektrolyyttivuorovaikutus on keskeinen fokusalue polyelektrolyyttipohjaisen materiaalin ominaisuuksia suunniteltaessa.

Tutkimustulokset julkaistiin hiljattain ACS Macro Letters -lehdessä. Tutkimustyö on osa NSF Materials World Network -yhteistyöprojektia ja sen ovat rahoittaneet Suomen Akatemia ja NSF, Yhdysvallat. Tutkimuksen vastuullinen johtaja Aalto-yliopistossa on Maria Sammalkorpi (maria.sammalkorpi(at)aalto.fi) ja Yhdysvalloissa Jodie Lutkenhaus, Texas A&M University, TX, USA (jodie.lutkenhaus(at)tamu.edu).

³¢¾±²õä³Ù¾±±ð»å´Ç³Ù:

Akatemiatutkija Maria Sammalkorpi, kemian laitos, Aalto-yliopiston kemiantekniikan korkeakoulu; email: maria.sammalkorpi(at)aalto.fi
Alkuperäinen tieteellinen artikkeli: Erol Yildirim, Yanpu Zhang, Jodie L. Lutkenhaus, and Maria Sammalkorpi, ““ ACS Macro Letters, 2015, 4, pp 1017–1021.
 

  • ±Êä¾±±¹¾±³Ù±ð³Ù³Ù²â:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Henkilö kävelee värikkään tiiliseinällä olevan muraalin ohi, katuvalot ja sähkölaitteet yläpuolellaan.
³Û³ó³Ù±ð¾±²õ³Ù²âö, Tutkimus ja taide, Yliopisto Julkaistu:

Uusia akatemiatutkijoita ja akatemiahankkeita

Suomen Akatemian akatemiatutkijan ja -hankerahoituksen sai yhteensä 44 aaltolaista tutkijaa – onnittelut kaikille!
Kaksi vaaleaa puista jakkaraa, joista toinen on suorakulmainen ja toinen pyöreä, neutraalia taustaa vasten.
Tutkimus ja taide Julkaistu:

Aalto-yliopiston Puustudion tulevaisuuden visiot Suomen arvokkaimmasta puusta esittäytyvät Suomen metsämuseo Lustossa

Visakoivu – Pirun puristama puu -näyttely on esillä Lustossa 15.3.2026 saakka.
Five people with a diploma and flowers.
Palkinnot ja tunnustukset, Kampus, Tutkimus ja taide Julkaistu:

Avoimen tieteen kohokohta keväältä: Aallon avoimen tieteen palkintojuhla

Kokoonnuimme A Gridiin juhlimaan Aallon avoimen tieteen palkinnon 2024 saajia ja keskustelemaan avoimesta tieteestä.
Kaksi toisiinsa liittyvää ympyräsilmukkaa; sininen 'Simulation DBTL loop', ruskea 'Real-world DBTL loop'.
Palkinnot ja tunnustukset, Mediatiedotteet, Tutkimus ja taide Julkaistu: