91

Uutiset

Hiukkasten kvanttiominaisuudet onnistuttiin osoittamaan kokeellisesti

Tutkimuksesta voi olla hyötyä kvanttitietokoneiden tutkimuksessa.
Cover image of science magazine
Kannen kuvitus: C. Bickel/Science.

Tuore Science-lehdessä julkaistu tutkimus tarkastelee anioneiksi kutsuttuja hiukkasia, jotka ovat kiinnostavia erityisesti kvanttitietokoneiden ja muiden kvanttiominaisuuksia hyödyntävien laitteiden näkökulmasta. Tutkimuksessa mitattiin ensimmäistä kertaa suoraan anionien kvanttiominaisuuksia. Työryhmää johtaa professori Gwendal Féve Ecole Normale Supérieure –yliopistosta ja tutkimus toteutettiin yhteistyössä Aalto-yliopiston kanssa.

Kolmiulotteisessa maailmassamme on vain kahdenlaisia fysiikassa tunnettuja hiukkasia: toisiaan hylkiviä fermioneja ja toisiaan puoleensa vetäviä bosoneja. Yksi yleisimmin tunnettu fermioni on sähköä kuljettava elektroni, bosoneista tunnetuin on valoa kuljettava fotoni. Kaksiulotteisessa maailmassa tunnetaan kuitenkin vielä anioneja, hiukkasia, jotka eivät käyttäydy fermionien eivätkä bosonien tavoin. Anionien ominaisuudet poikkeavat muiden tunnettujen partikkelien kvanttiominaisuuksista.

Anioneja on tutkittu 1970-luvulta lähtien, mutta hiukkasten kvanttiominaisuuksia ei ole tätä ennen pystytty kokeellisesti osoittamaan. Tutkijat ovat tähän saakka yrittäneet luoda ja mitata anioneja sulkemalla niitä nanokokoisiin säiliöihin ja mittaamalla niiden liikkumista, mutta näiden tutkimusten tulokset ovat toistaiseksi olleet kiistanalaisia.

Uusi tutkimus perustuu hyvin pieneen hiukkastörmäyttimeen.

”Hiukkastörmäyttimen halkaisija on ihmisen hiuksen kokoluokkaa. Törmäyttimessä hajotimme anioneita paljastaaksemme niiden todellisen kvanttiluonteen”, sanoo tohtorikoulutettava Hugo Bartolomei Ecole Normale Supérieure –yliopistosta.

”Kokeemme toimi kuin nelisuuntainen tienristeys, jossa kaksi tietä johti sisään ja kaksi ulos. Jos risteykseen lähetetään fermioneja eri sisäänmenotietä pitkin, ne kohtaavat risteyksessä ja lähtevät pois eri ulosmenoteitä pitkin. Jos risteykseen lähetetään vastaavasti bosoneja, ne kohtaavat risteyksessä ja lähtevät pois samaa tietä. Jos taas risteykseen lähetetään anioneja, ne käyttäytyvät aivan eri tavalla. Joskus ne yhdistyvät ja joskus ne lähtevät eri suuntiin. Yleensä ne kasaantuvat yhteen kuten bosonit, mutta niiden täsmällinen yhteenkuuluvuuden aste vaihtelee jaksollisesti niiden erityisen aaltoluonteen mukaisesti”, Aalto-yliopiston tutkija Manohar Kumar kertoo.

Tuore Science-lehdessä julkaistu tutkimus tarkastelee anioneiksi kutsuttuja hiukkasia, jotka ovat kiinnostavia erityisesti kvanttitietokoneiden ja muiden kvanttiominaisuuksia hyödyntävien laitteiden näkökulmasta. Tutkimuksessa mitattiin ensimmäistä kertaa suoraan anionien kvanttiominaisuuksia. Työryhmää johtaa professori Gwendal Féve Ecole Normale Supérieure –yliopistosta ja tutkimus toteutettiin yhteistyössä Aalto-yliopiston kanssa.

Sample stage showing a close up of how the sample stage works
Yksi tutkimuksessa käytetyistä näytteistä. Kuva: Manohar Kumar.

Tutkimuksessa keskityttiin niin sanottuihin abelialaisiin anioneihin, joita tarkasteltiin kokeellisesti. Teoreettisesti tunnetaan myös eksoottisempi hiukkastyyppi, niin kutsuttu ei-abelialainen anioni. Yleisesti nämä ei-abelialaiset hiukkaset käyttäytyvät matemaattisesti erityisellä tavalla, mikä tekee niistä houkuttelevia tutkimuskohteita kvanttiteknologian näkökulmasta.

”Tutkimuksessamme esitellään menetelmä, jolla abelialaisia anioneja voidaan vaihtaa keskenään. Jos myös ei-abelialaisia anioneja onnistutaan vaihtamaan keskenään, niistä voidaan muodostaa kvanttibitti eli kubitti. Tämä ominaisuus on keskeinen topologisessa kvanttilaskennassa ja kvanttitietokoneiden tutkimuksessa”, Manohar Kumar kertoo.

Tohtori Manohar Kumar tutkii nyt grafeenia ja kaksiulotteisia materiaaleja professori Pertti Hakosen tutkimusryhmässä Aalto-yliopiston teknillisen fysiikan laitoksella.

”Grafeeni voi mahdollistaa ei-abelialaisten anionien luomisen ja kokeellisen tutkimisen, joten jatkan nyt kokeen kehittämistä grafeenissa ja pyrin mittaamaan näiden uusien hiukkasten ominaisuuksia”, sanoo Manohar Kumar.

Aalto-yliopiston tutkimusryhmä on osa kansallista . Se hyödyntää tutkimuksessaan kansallista -tutkimusinfrastruktuuria, jonka Kylmälaboratorio on myös osa eurooppalaista ultramatalien lämpötilojen .

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Näkymä Otaniemen kampuksen keskiöstä
Kampus Julkaistu:

Tutkimustulos: Asiakastyytyväisyys Aalto-yliopiston kampuksen toimitiloihin pysyy korkealla tasolla

ACRE arvioi toimitila-asiakkaidensa tyytyväisyyttä vuosittain asiakastyytyväisyyskyselyn avulla. Lue viimeisimmän kyselyn tuloksista.
Henkilö kävelee värikkään tiiliseinällä olevan muraalin ohi, katuvalot ja sähkölaitteet yläpuolellaan.
۳ٱ𾱲ٲö, Tutkimus ja taide, Yliopisto Julkaistu:

Uusia akatemiatutkijoita ja akatemiahankkeita

Suomen Akatemian akatemiatutkijan ja -hankerahoituksen sai yhteensä 44 aaltolaista tutkijaa – onnittelut kaikille!
Aalto-yliopistolla kaksi lippua: sateenkaarilippu ja keltainen lippu. Taustalla moderni rakennus ja vihreitä puita.
Mediatiedotteet Julkaistu:

Tutkimus: Seksuaali- ja sukupuolivähemmistöille myönteiset yritykset ovat selvästi innovatiivisempia

Tutkimuksen mukaan LGBTQ+- eli sukupuoli- ja seksuaalivähemmistöille myönteinen henkilöstöpolitiikka voi merkittävästi vauhdittaa innovaatioiden syntymistä yhdysvaltalaisissa yrityksissä.
Opiskelija tietokoneen äärellä.
۳ٱ𾱲ٲö, Opinnot, Yliopisto Julkaistu:

FITech-verkostoyliopiston uusi hanke kehittää verkoston kykyjä jatkuvan oppimisen osa-alueella

FITechin uuden FITech FORWARD -hankkeen tavoitteena on kehittää verkoston jäsenyliopistojen kykyä luoda jatkuvan oppimisen ja pienten osaamiskokonaisuuksien tarjontaa tekniikan alojen ajankohtaisiin osaamistarpeisiin. Aalto-yliopiston lisäksi hankkeessa ovat mukana Oulun yliopisto, Tampereen yliopisto ja Vaasan yliopisto.