91青青草

News

The smallest robotic arm you can imagine is controlled by artificial intelligence

Researchers used deep reinforcement learning to steer atoms into a lattice shape, with a view to building new materials or nanodevices.
Schematic of atoms being moved with tweezers at the nano-scale

In a very cold vacuum chamber, single atoms of silver form a star-like lattice. The precise formation is not accidental, and it wasn鈥檛 constructed directly by human hands either. Researchers used a kind of artificial intelligence called deep reinforcement learning to steer the atoms, each a fraction of a nanometer in size, into the lattice shape. The process is similar to moving marbles around a Chinese checkers board, but with very tiny tweezers grabbing and dragging each atom into place.

The main application for deep reinforcement learning is in robotics, says postdoctoral researcher I-Ju Chen. 鈥淲e鈥檙e also building robotic arms with deep learning, but for moving atoms,鈥 she explains. 鈥淩einforcement learning is successful in things like playing chess or video games, but we鈥檝e applied it to solve technical problems at the nanoscale.鈥 

So why are scientists interested in precisely moving atoms? Making very small devices based on single atoms is important for nanodevices like transistors or memory. Testing how and whether these devices work at their absolute limits is one application for this kind of atomic manipulation, says Chen. Building new materials atom-by-atom, rather than through traditional chemical techniques, may also reveal interesting properties related to superconductivity or quantum states.

The silver star lattice made by Chen and colleagues at the Finnish Center for Artificial Intelligence FCAI and Aalto University is a demonstration of what deep reinforcement learning can achieve. 鈥淭he precise movement of atoms is hard even for human experts,鈥 says Chen. 鈥淲e adapted existing deep reinforcement learning for this purpose. It took the algorithm on the order of one day to learn and then about one hour to build the lattice.鈥 The reinforcement part of this type of deep learning refers to how the AI is guided鈥攖hrough rewards for correct actions or outputs. 鈥淕ive it a goal and it will do it. It can solve problems that humans don鈥檛 know how to solve.鈥

Applying this approach to the world of nanoscience materials is new. Nanotechniques can become more powerful with the injection of machine learning, says Chen, because it can accelerate the parameter selection and trial-and-error usually done by a person. 鈥淲e showed that this task can be completed perfectly through reinforcement learning,鈥 concludes Chen. The group鈥檚 research, led by professors Adam Foster and Peter Liljeroth, was recently published in .

Reference

Chen IJ, Aapro M, Kipnis A, Ilin A, Liljeroth P, Foster AS (2022). Precise atom manipulation through deep reinforcement learning. Nat Comms.

FCAI

The Finnish Center for Artificial Intelligence FCAI is a research hub initiated by Aalto University, the University of Helsinki, and the Technical Research Centre of Finland VTT. The goal of FCAI is to develop new types of artificial intelligence that can work with humans in complex environments, and help modernize Finnish industry. FCAI is one of the national flagships of the Academy of Finland.

Picture of OtaNano lab equipment.

OtaNano

OtaNano is Finland's national research infrastructure for micro-, nano-, and quantum technologies

  • Updated:
  • Published:
Share
URL copied!

Read more news

A group sitting around tables in a modern room; some are holding papers and discussing. Photo from the EDI workshop in June 2025.
University Published:

Creating room for connection, dialogue, and collective planning is more important than ever

Two workshops were organised to build bridges and foster meaningful action on EDI at the Aalto School of Business.
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
A person reads a book in front of a large illuminated 'A' sign.
Press releases Published:

Half of highly educated immigrants find employment through Espoo and Aalto鈥檚 collaboration

The exceptional employment outcomes are the result of collaboration, in which service design research has played a key role.
A complex, large installation of twisted white paper structures with various spirals and curves against a dark background.
Aalto Magazine Published:

Five things: Origami unfolds in many ways

The word ori means 鈥榝olded鈥 and kami means 鈥榩aper鈥 in Japanese. Origami refers to both the traditional Japanese art of paper folding and to the object it produces. At Aalto University, this centuries-old technique finds applications across a variety of disciplines. Here are five examples: