91青青草

News

Single-atom dopants in metallic nanoparticles can offer high tunability for plasmonic-catalytic applications

CEST researchers use TDDFT-based calculations to study the tunability of the plasmonic-catalytic properties of nanoparticles
graphic illustratinig metal atoms
Graphic by Dr. Tuomas Rossi

In plasmonic-catalytic nanoparticles a plasmonic metal acts antenna for light absorption, whereas the catalytic metal component facilitates the reaction. Plasmonic nanoparticles can absorb light at certain resonant wavelengths very efficiently. As the light-induced plasmonic excitation in the nanoparticle decays, non-thermal high-energy electrons and holes, so called 鈥渉ot carriers鈥, are formed. Hot carriers can interact with nearby molecules and enhance chemical reactions. Typically, the reactions are catalyzed by carriers of certain energies, which is why the ability to control the energies of the hot carriers is important. Experimental investigations of the plasmonic-catalytic properties are challenging and time consuming, but computational tools can reveal quantum mechanical insight and trends.

photo of CEST researcher D. Sorvisto
CEST researcher D. Sorvisto

The CEST group members Daniel Sorvisto, Tuomas Rossi, and Patrick Rinke recently published their computational exploration of single-atom dopant effects in plasmonic nanoparticles. The goal of the study was to analyze the effects of doping on the hot-carrier generation in the nanoparticle and the extent to which hot carriers can be tuned. Computations are based on Kohn-Sham DFT and TDDFT. Two different nanoparticle structures of a few hundred atoms, three different plasmonic metals, and five different catalytic metals are included in the study. Results show that the local hot-carrier generation can be tuned by choosing the right dopant element while the plasmonic response of the nanoparticle as a whole is not significantly affected by the dopant. As the resonant wavelengths of nanoparticles can also be tuned by the overall shape, size, and composition of the nanoparticle, the findings of the study indicate that plasmonic nanoparticles could be simultaneously tailored to absorb light efficiently and generate hot carriers tuned to a specific purpose. An interesting next step would be to study the catalytic performance and include the interactions between the nanoparticles and reactant molecules in the modeling.

The paper is published in The Journal of Physical Chemistry C ().

  • Updated:
  • Published:
Share
URL copied!

Read more news

A man in a suit standing next to a large green metal door in an underground bunker.
Press releases Published:

Doctoral thesis: Finland鈥檚 civil defence shelters protect nearly everyone 鈥 but hotter summers may test their limits

Built over decades, Finland鈥檚 civil defence shelter system covers almost the entire population and has cost the equivalent of three years of defence spending.
Laajalahti nature reserve in Espoo
Press releases, Research & Art Published:

Rising sea could erase a significant portion of coastal habitats in Finland

More than a fifth of coastal meadows and sandy beaches may disappear by the turn of the century.
A spacious hall with people seated and standing, mannequins wearing costumes, and large windows letting in natural light.
Research & Art Published:

N盲yt枚s/N盲yttely25 award-winning works on display in the Bio Rex lobby

Aalto University and Konstsamfundet are deepening their collaboration. As part of this, the award-winning works of N盲yt枚s/N盲yttely25 will be showcased in Helsinki city centre at Bio Rex in the Lasipalatsi block.
Aalto ARTS Grad Show poster with abstract shapes in black and white. Dates: 3 Sep - 6 Oct 2025.
Research & Art Published:

Coming soon: Aalto ARTS Grad Show 2025

We're thrilled to invite you to the Aalto ARTS Grad Show 2025 of the School of Arts, Design and Architecture!