91青青草

News

Researchers seeking environmentally friendly solutions for sea transport and work machinery

Research funding from Business Finland supports development of new power device solutions from the research phase to practical application.
Tilavuus, joka on esitetty kaksoispolttoainesuihkulla. Sininen v盲ri edustaa matalan l盲mp枚tilan kemiaa (laji H2O2), kun taas punainen v盲ri osoittaa korkean l盲mp枚tilan palamista (T> 1500 K) [1]. Kuva: Aalto-yliopisto / B. Tekgul, H. Kahila, S. Karimkashi, O. Kaario, Z. Ahmad, E. Lendormy, J. Hyv枚nen, and V. Vuorinen
A volume rendered representation on dual-fuel spray ignition. Blue color represents low-temperature chemistry while red color shows high-temperature combustion. Photo: Tekgul, Kahila, Karimkashi, Kaario, Ahmad, Lendormy, Hyv枚nen, Vuorinen / Aalto

Clean Propulsion Technologies, a Finnish consortium, is looking for new solutions for environmentally friendly and efficient sea transport and for work machinery. Increased international competition and tougher legislation on emissions are spurring Development work of the different fields. Taking part in research funding granted by Business Finland are six research organisations and nine enterprises. Research organisations and companies are developing new products out of the most promising and most innovative power plant technologies. In the long term, a shared technology development plan will be developed for both fields, which will also offer a stable path for meeting the requirements set for 2050.

Three research groups from Aalto University are taking part in the project: The control engineering research group at the School of Electrical Engineering, which is headed by Docent Kai Zenger, the research group of energy conversion at  the School of Engineering, which is headed by Professor Martti Larmi, and the mechatronics research group headed by Professor Kari Tammi.

鈥淥ur common goal in the consortium is to ensure a position of global technology leadership for Finland's power plant technology by creating a shared vision and business solutions that comply with sustainable development鈥, says Professor Maciej Mikulski of the University of Vaasa. Mikulski is the director responsible for the Clean Propulsion Technologies project.

The most significant technical results that can be expected from the project are the groundbreaking medium-speed multifuel engine that utilises reactivity-controlled compression ignition (RCCI) and a fast-running hydrogen engine solution. The study also focuses on the development of progressive recirculation of exhaust gases, hybrid power devices, and the control of predictive power transmission. The whole forms an ecologically, socially, and economically sustainable business model.

A study is under way at Aalto University for developing virtual sensors as well as machine learning algorithms connected with them for the reduction of nitrogen oxide and carbon dioxide in new multifuel engines and secondary treatment systems.

鈥楳odel-based controls are being developed for a new generation of low-emission engines, which requires precision modelling based on fluid calculation and the development of models to fit with control design. Optimum guidance systems are being developed for hybrid systems formed by several energy sources. The results will be evaluated both through simulations and practical tests鈥, Kai Zenger says.

Clean Propulsion Technologies (CPT) is one of the projects of the Engine Research Initiative (ERI) consortium. The Engine Research Initiative is a research consortium comprising Finnish universities and W盲rtsil盲 that is looking for future technical solutions specifically for the development of new energy-efficient and low-emission technologies especially for the shipping industry and machinery.

The CPT project consortium comprises six research organisations (The University of Vaasa, Aalto University, the University of Tampere, 脜bo Akademi University, VTT, and LUT University) as well as nine companies (W盲rtsil盲 Finland, AGCO Power, Meyer Turku, Napa, Dinex Finland, Proventia, Geyser Batteries, Bosch Rexroth and APUGenius). The total budget of the project is about 鈧 15 million of which 鈧 7.9 million is from Business Finland. The companies and universities will fund the rest.

Further information:

Kai Zenger
Docent, Aalto University School of Electrical Engineering
tel. +358 50 4096 252
kai.zenger@aalto.fi

Anne Kosola
Manager, Corporate Relations Aalto University
tel. +358 50 5969 395
anne.kosola@aalto.fi

Maciej Mikulski
Head of Project, Professor, University of Vaasa
Tel. 358 29 449 8591
maciej.mikulski@uwasa.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

A complex, large installation of twisted white paper structures with various spirals and curves against a dark background.
Aalto Magazine Published:

Five things: Origami unfolds in many ways

The word ori means 鈥榝olded鈥 and kami means 鈥榩aper鈥 in Japanese. Origami refers to both the traditional Japanese art of paper folding and to the object it produces. At Aalto University, this centuries-old technique finds applications across a variety of disciplines. Here are five examples:
Two people wearing headphones sit at a desk with a large screen in a dimly lit office.
Cooperation, University Published:

Unite! Networking Hub Launches: Exchange best practices and learn from peers across Europe

The Unite! Networking Hub is an online space for Unite! faculty and staff to meet to connect and engage with colleagues in the same field of expertise, share and discover best practices, and support one another in addressing work-related challenges.
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saram盲ki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete 鈥 and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)