91ÇàÇà²Ý

News

Record-breaking tiny centenary celebration logo only a hundredth of a millimetre in size

The logo for Finland’s centennial was created from silicon with the same method as the world's smallest Aalto vase.
The smallest logo for Finland’s centennial from two different angles. The first structure included the flag. In the measurement scale below, 5 µm equals two-hundredths of a millimetre. The distance from one edge to another is almost precisely one-hundredth of a millimetre. Images: Nikolai Chekurov/Micronova, Aalto University

To honour Finland's centenary celebration, a silicon structure, based on the official logo of the centennial, was created at Aalto University. Doctor of Nanotechnology Nikolai Chekurov created the structure in Micronova's cleanroom at Otaniemi in Espoo. His method combined focused ion beams with cryogenic deep reactive ion etching, where the target is first bombed with heavy ions and then etched with ICP-RIE, inductively coupled plasma reactive-ion etching.

This same method was used to create the world's tiniest Aalto vase, which has a capacity of just 0.1 femtolitres. This is not a standard technique, as it has been developed within Professor Ilkka Tittonen's Micro and Quantum Systems research group in several different doctoral dissertations.

'First, a thin layer of gallium ions are placed on the surface of a smooth silicon wafer in the shape of the desired shape, in this case the centennial logo. After this, the wafer is etched with gas, leaving the areas with the gallium as-is and etching away those areas without, thus revealing the shape. The longer the etching goes on, the taller the structure becomes,' Chekurov explains.

This method could have been used to make the centennial logo even smaller, but Chekurov and his colleagues wanted to create a nearly flawless and completely accurate replica of the original logo's design. The logo, which is only one-hundredth of a millimetre in size, is so tiny that it can barely be seen with an optical microscope. Marvelling its three-dimensional structure requires an electron microscope, as the logo's tiniest structures are under a micrometre, i.e. one-thousandth of a millimetre, in size.

'Naturally, this method has other practical applications as well. It can be used to create different microstructures that can be utilised in many ways, for example in photonics, measuring small amounts of liquids, or as mechanical microsensors,' notes Professor Tittonen. 

More information:

Professor Ilkka Tittonen
Aalto University
tel. +358 40 543 7564 
ilkka.tittonen@aalto.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

Two flags at Aalto University: a pride flag and a yellow flag. A modern building and green trees are in the background.
Press releases Published:

LGBTQ-Friendly Firms More Innovative

Firms with progressive LGBTQ policies produce more patents, have more patent citations, and have higher innovation quality as measured by patent originality, generality, and internationality.
Two interconnected circular loops; one blue labelled 'Simulation DBTL loop', one brown labelled 'Real-world DBTL loop'.
Awards and Recognition, Press releases, Research & Art Published:

A revolution for R&D with the missing link of machine learning — project envisions human-AI expert teams to solve grand challenges

Samuel Kaski receives ERC Advanced Grant to develop new machine learning that is robust, generalisable and engages human experts.
A man in a suit standing next to a large green metal door in an underground bunker.
Press releases Published:

Doctoral thesis: Finland’s civil defence shelters protect nearly everyone – but hotter summers may test their limits

Built over decades, Finland’s civil defence shelter system covers almost the entire population and has cost the equivalent of three years of defence spending.
Laajalahti nature reserve in Espoo
Press releases, Research & Art Published:

Rising sea could erase a significant portion of coastal habitats in Finland

More than a fifth of coastal meadows and sandy beaches may disappear by the turn of the century.