91ÇàÇà²Ý

News

Record-breaking tiny centenary celebration logo only a hundredth of a millimetre in size

The logo for Finland’s centennial was created from silicon with the same method as the world's smallest Aalto vase.
The smallest logo for Finland’s centennial from two different angles. The first structure included the flag. In the measurement scale below, 5 µm equals two-hundredths of a millimetre. The distance from one edge to another is almost precisely one-hundredth of a millimetre. Images: Nikolai Chekurov/Micronova, Aalto University

To honour Finland's centenary celebration, a silicon structure, based on the official logo of the centennial, was created at Aalto University. Doctor of Nanotechnology Nikolai Chekurov created the structure in Micronova's cleanroom at Otaniemi in Espoo. His method combined focused ion beams with cryogenic deep reactive ion etching, where the target is first bombed with heavy ions and then etched with ICP-RIE, inductively coupled plasma reactive-ion etching.

This same method was used to create the world's tiniest Aalto vase, which has a capacity of just 0.1 femtolitres. This is not a standard technique, as it has been developed within Professor Ilkka Tittonen's Micro and Quantum Systems research group in several different doctoral dissertations.

'First, a thin layer of gallium ions are placed on the surface of a smooth silicon wafer in the shape of the desired shape, in this case the centennial logo. After this, the wafer is etched with gas, leaving the areas with the gallium as-is and etching away those areas without, thus revealing the shape. The longer the etching goes on, the taller the structure becomes,' Chekurov explains.

This method could have been used to make the centennial logo even smaller, but Chekurov and his colleagues wanted to create a nearly flawless and completely accurate replica of the original logo's design. The logo, which is only one-hundredth of a millimetre in size, is so tiny that it can barely be seen with an optical microscope. Marvelling its three-dimensional structure requires an electron microscope, as the logo's tiniest structures are under a micrometre, i.e. one-thousandth of a millimetre, in size.

'Naturally, this method has other practical applications as well. It can be used to create different microstructures that can be utilised in many ways, for example in photonics, measuring small amounts of liquids, or as mechanical microsensors,' notes Professor Tittonen. 

More information:

Professor Ilkka Tittonen
Aalto University
tel. +358 40 543 7564 
ilkka.tittonen@aalto.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

A person reads a book in front of a large illuminated 'A' sign.
Press releases Published:

Half of highly educated immigrants find employment through Espoo and Aalto’s collaboration

The exceptional employment outcomes are the result of collaboration, in which service design research has played a key role.
Forest with green mossy ground and thin trees, a square measuring frame is set on the moss.
Press releases Published:

Satellite images reveal the positive effects of restoration in the northern hemisphere peatlands

Satellite data spanning over 20 years shows that the temperature and albedo of restored peatlands begin to resemble those of intact peatlands within about a decade
Close-up of a glowing dual processor on a dark motherboard with futuristic light effects and detailed circuitry.
Press releases, Research & Art Published:

New quantum record: Transmon qubit coherence reaches millisecond threshold

The result foreshadows a leap in computational capabilities, with researchers now inviting experts around the globe to reproduce the groundbreaking measurement.
Aerial view of a coastal city with numerous buildings, a marina, and boats docked. Trees and water surround the city.
Press releases, Research & Art Published:

Study: 70% of emissions from new buildings come from construction – and this is often overlooked

While energy efficiency and the use of renewable energy have reduced the life cycle emissions of new buildings, emissions from construction have not decreased. Preserving green areas and prioritizing timber construction would make construction more sustainable, researchers emphasize.