New surface makes oil contamination remove itself
Oil drop moves away from the landing point to the direction set by geometrical patterning of the surface. Video: Ville Jokinen, Visa Noronen, Sebastian R枚der.
Researchers' oleophobic surfaces are microtextured with radial arrays of undercut stripes. When oil drops fall on these surfaces, drops move away from the landing point to the direction set by asymmetric geometrical patterning of the surface. The surfaces open new avenues for power-free liquid transportation and oil contamination self-removal applications in analytical and fluidic devices.
鈥 We developed surfaces that are able to move liquid oil droplets by surface tension forces. Droplets from anywhere within the pattern will spontaneously move to the center of the pattern, tells Postdoctoral Researcher Ville Jokinen.
- Although surface engineering facilitates effective liquid manipulation and enables water droplet self-transportation on synthetic surfaces, self-transportation of oil droplets posed a major challenge because of their low surfacetension, explains Postdoctoral Researcher Xuelin Tian.
Oil drop moves away from the landing point to the direction set by asymmetric geometrical patterning of the surface. Photo: Ville Jokinen / Aalto University
New surfaces are also able to move low surface tension liquids other than oil. They work for water, wine and even pure ethanol. Directional liquid transportation of water is also found in nature, for instance, in cactus needles and the shells of desert beetles. Researchers see a range of industrial applications.
鈥 The droplets position themselves very accurately at the center of the pattern. This could be used to deposit arrays of functional materials. We envision the patterns being used the other way around as well, for instance, to transport unwanted stray droplets away from critical areas of devices, such as to prevent clogging of nozzles in inkjet printing, says Professor Robin Ras.
Contact details:
Postdoctoral Researcher Ville Jokinen
Aalto University (Finland)
ville.p.jokinen@aalto.fi
Tel. +358 40 587 0425
Professor Robin Ras
Aalto University (Finland)
robin.ras@aalto.fi
Tel. +358 50 432 6633
Research article: Juan Li, Qi Hang Qin, Ali Shah, Robin H. A. Ras, Xuelin Tian, Ville Jokinen: Oil droplet self-transportation on oleophobic surfaces. Science Advances 2016. DOI 10.1126/sciadv.1600148
(advances.sciencemag.org)
Read more news

Alum Laura Suomalainen: 鈥漈he idea of always having your life with you and being able to move from place to place spoke to me.鈥
Laura Suomalainen had long dreamed of "Vanlife" until the opportunity to go on exchange to Norway set the wheels of her dream in motion. Nowadays she travels across Europe in her own van and works remotely.
Textile Chemistry Group Visits Valmet Fiber Technology Center for TexirC Project Meeting
August 18, 2025 鈥 The Textile Chemistry research group took part in the TexirC project meeting hosted at Valmet鈥檚 Fiber Technology Center, bringing together partners to review progress and exchange results.
Modern Helsinki Map presents jewels of contemporary architecture
Modern Helsinki Map presents over 50 significant examples of modernist and contemporary architecture in the Helsinki region.