New surface makes oil contamination remove itself
Oil drop moves away from the landing point to the direction set by geometrical patterning of the surface. Video: Ville Jokinen, Visa Noronen, Sebastian Röder.
Researchers' oleophobic surfaces are microtextured with radial arrays of undercut stripes. When oil drops fall on these surfaces, drops move away from the landing point to the direction set by asymmetric geometrical patterning of the surface. The surfaces open new avenues for power-free liquid transportation and oil contamination self-removal applications in analytical and fluidic devices.
– We developed surfaces that are able to move liquid oil droplets by surface tension forces. Droplets from anywhere within the pattern will spontaneously move to the center of the pattern, tells Postdoctoral Researcher Ville Jokinen.
- Although surface engineering facilitates effective liquid manipulation and enables water droplet self-transportation on synthetic surfaces, self-transportation of oil droplets posed a major challenge because of their low surfacetension, explains Postdoctoral Researcher Xuelin Tian.
Oil drop moves away from the landing point to the direction set by asymmetric geometrical patterning of the surface. Photo: Ville Jokinen / Aalto University
New surfaces are also able to move low surface tension liquids other than oil. They work for water, wine and even pure ethanol. Directional liquid transportation of water is also found in nature, for instance, in cactus needles and the shells of desert beetles. Researchers see a range of industrial applications.
– The droplets position themselves very accurately at the center of the pattern. This could be used to deposit arrays of functional materials. We envision the patterns being used the other way around as well, for instance, to transport unwanted stray droplets away from critical areas of devices, such as to prevent clogging of nozzles in inkjet printing, says Professor Robin Ras.
Contact details:
Postdoctoral Researcher Ville Jokinen
Aalto University (Finland)
ville.p.jokinen@aalto.fi
Tel. +358 40 587 0425
Professor Robin Ras
Aalto University (Finland)
robin.ras@aalto.fi
Tel. +358 50 432 6633
Research article: Juan Li, Qi Hang Qin, Ali Shah, Robin H. A. Ras, Xuelin Tian, Ville Jokinen: Oil droplet self-transportation on oleophobic surfaces. Science Advances 2016. DOI 10.1126/sciadv.1600148
(advances.sciencemag.org)
Read more news

Aalto computer scientists in STOC 2025
Two papers from Aalto Department of Computer Science were accepted to the Symposium on Theory of Computing (STOC).
New Academy Research Fellows and Academy Projects
A total of 44 Aalto researchers received Academy Research Fellowship and Academy Project funding from the Research Council of Finland – congratulations to all!
LGBTQ-Friendly Firms More Innovative
Firms with progressive LGBTQ policies produce more patents, have more patent citations, and have higher innovation quality as measured by patent originality, generality, and internationality.