91青青草

News

New detector breakthrough pushes boundaries of quantum computing

A new paper published in Nature shows potential for graphene bolometers to become a game-changer for quantum technology

Physicists at Aalto University and VTT Technical Research Centre of Finland have developed a new detector for measuring energy quanta at unprecedented resolution. This discovery could help bring quantum computing out of the laboratory and into real-world applications. The results have been published today in Nature. 

The type of detector the team works on is called a bolometer, which measures the energy of incoming radiation by measuring how much it heats up the detector. Professor Mikko M枚tt枚nen鈥檚 Quantum Computing and Devices group at Aalto has been developing their expertise in bolometers for quantum computing over the past decade, and have now developed a device that can match current state-of-the-art detectors used in quantum computers.

鈥業t is amazing how we have been able to improve the specs of our bolometer year after year, and now we embark on an exciting journey into the world of quantum devices,鈥 says M枚tt枚nen.

The low-temperature plate inside of the refrigerator. The team attaches their bolometers here. Credit: Aalto University.
The low-temperature plate inside of the refrigerator. The team attaches their bolometers here. Credit: Aalto University.

Measuring the energy of qubits is at the heart of how quantum computers operate. Most quantum computers currently measure a qubit鈥檚 energy state by measuring the voltage induced by the qubit. However, there are three problems with voltage measurements: firstly, measuring the voltage requires extensive amplification circuitry, which may limit the scalability of the quantum computer; secondly, this circuitry consumes a lot of power; and thirdly, the voltage measurements carry quantum noise which introduces errors in the qubit readout. Quantum computer researchers hope that by using bolometers to measure qubit energy, they can overcome all of these complications, and now Professor M枚tt枚nen鈥檚 team have developed one that is fast enough and sensitive enough for the job.

鈥楤olometers are now entering the field of quantum technology and perhaps their first application could be in reading out the quantum information from qubits. The bolometer speed and accuracy seems now right for it,鈥 says Professor M枚tt枚nen.

The team had previously produced a bolometer made of a gold-palladium alloy with unparalleled low noise levels in its measurements, but it was still too slow to measure qubits in quantum computers. The breakthrough in this new work was achieved by swapping from making the bolometer out of gold-palladium alloys to making them out of graphene. To do this, they collaborated with Professor Pertti Hakonen鈥檚 NANO group 鈥 also at Aalto University 鈥 who have expertise in fabricating graphene-based devices. Graphene has a very low heat capacity, which means that it is possible to detect very small changes in its energy quickly. It is this speed in detecting the energy differences that makes it perfect for a bolometer with applications in measuring qubits and other experimental quantum systems. By swapping to graphene, the researchers have produced a bolometer that can make measurements in well below a microsecond, as fast as the technology currently used to measure qubits.

鈥楥hanging to graphene increased the detector speed by 100 times, while the noise level remained the same. After these initial results, there is still a lot of optimisation we can do to make the device even better,鈥 says Professor Hakonen.

Artistic image of a graphene bolometer controlled by electric field. Credit: Heikka Valja.
Artistic image of a graphene bolometer controlled by electric field. Credit: Heikka Valja.

Now that the new bolometers can compete when it comes to speed, the hope is to utilise the other advantages bolometers have in quantum technology. While the bolometers reported in the current work performs on par with the current state-of-the-art voltage measurements, future bolometers have the potential to outperform them. Current technology is limited by Heisenberg鈥檚 uncertainty principle: voltage measurements will always have quantum noise, but bolometers do not. This higher theoretical accuracy, combined with the lower energy demands and smaller size 鈥 the graphene flake could fit comfortably inside a single bacterium 鈥 means that bolometers are an exciting new device concept for quantum computing.

The next steps for their research is to resolve the smallest energy packets ever observed using bolometers in real-time and to use the bolometer to measure the quantum properties of microwave photons, which not only have exciting applications in quantum technologies such as computing and communications, but also in fundamental understanding of quantum physics.

Many of the scientists involved in the researchers also work at IQM, a spin-out of Aalto University developing technology for quantum computers. 鈥淚QM is constantly looking for new ways to enhance its quantum-computer technology and this new bolometer certainly fits the bill,鈥 explains Dr Kuan Yen Tan, Co-Founder of IQM who was also involved in the research.

The research collaboration is part of the (QTF) and the BOLOSE sensor development project (RADDESS program, 2018-2021) funded by the Academy of Finland. Professor M枚tt枚nen's team is also part of the Horizon 2020 funded QMICS project, part of the EU commission鈥檚 Quantum Flagship.

The work was carried out using the OtaNano research infrastructure. OtaNano provides state-of-the-art working environment and equipment for nanoscience and -technology, and quantum technologies research in Finland. OtaNano is operated by Aalto University and VTT, and is available for academic and commercial users internationally. To find out more, visit their website.

More Information

Full Paper

R. Kokkoniemi, J.-P. Girard, D. Hazra, A. Laitinen, J. Govenius, R. E. Lake, I. Sallinen, V. Vesterinen, P. Hakonen, and M. M枚tt枚nen, Bolometer  operating  at  the  threshold  for  circuit  quantum electrodynamics, Nature, (2020).
 

Contact Details

Mikko M枚tt枚nen
Professor
Aalto University and  VTT
mikko.mottonen@aalto.fi

Pertti Hakonen
Professor
Aalto University
pertti.hakonen@aalto.fi

Read Mikko M枚tt枚nen鈥檚 blog:  (VTT)

Find out more

Quantum Computing and Devices (QCD)

We have a major effort on experimental low-temperature physics, but we also carry out computational and theoretical work down to fundamental quantum mechanics.

Department of Applied Physics
Nano cryostat

Quantum Circuits and Correlations (NANO)

Nano group of the Low Temperature Laboratory investigates fundamental quantum phenomena in nanostructures using low temperature and electronic transport measurements.

Department of Applied Physics
  • Updated:
  • Published:
Share
URL copied!

Read more news

Five people with a diploma and flowers.
Awards and Recognition, Campus, Research & Art Published:

Spring term open science highlight: Aalto Open Science Award Ceremony

We gathered at A Grid to celebrate the awardees of the Aalto Open Science Award 2024 and discuss open science topics with the Aalto community.
Two interconnected circular loops; one blue labelled 'Simulation DBTL loop', one brown labelled 'Real-world DBTL loop'.
Awards and Recognition, Press releases, Research & Art Published:

A revolution for R&D with the missing link of machine learning 鈥 project envisions human-AI expert teams to solve grand challenges

Samuel Kaski receives ERC Advanced Grant to develop new machine learning that is robust, generalisable and engages human experts.
A modern room with unique white chairs, wooden stools, leafy plants, and a cloud-like hanging lamp.
Research & Art Published:

Aalto University Furniture Program is exhibiting at 3daysofdesign in Copenhagen

3 Days of Design, the Copenhagen-based festival, is taking place from 18 to 20 June 2025.
Opiskelijoita Korkeakoulunaukiolla
Research & Art Published:

School of Business researchers have shared their expertise in top-tier media outlets

Over the Spring (March-May) of 2025, the School of Business featured in several publications reaching more than 270,000 views from a massive global audience