91ÇàÇà²Ý

News

It’s not as difficult as you think to shout upwind

Researchers unveil and explain a common-sense misunderstanding
To make the measurements, a car was used to move a model of a shouter, generating wind past it.
To make the measurements, a car was used to move a model of a shouter, generating wind past it.

For years, Ville Pulkki has been wondering why it feels so difficult to shout upwind. The sensation is common enough to have found its way into an idiom about not being understood. But Pulkki, a professor of acoustics at Aalto University, wanted a scientific explanation for the phenomenon – and there wasn’t been one. 

In a published in Nature’s Scientific Reports, Pulkki’s research team showed that our common sense understanding of this situation is wrong. It isn’t harder to shout into the wind; it’s just harder to hear yourself.

In fact, acousticians have long known that sound carries better within the first 100 metres upwind. Many people have noticed that a siren sounds louder as it approaches and then quieter as it moves away. The mechanics behind this is similar to the Doppler effect, in which a sound changes frequency as it moves. 

Pulkki’s earlier research had confirmed that wind doesn’t affect the emanation pattern of speech, so there was no reason why shouting into the wind would be difficult. He therefore asked one of his master's students, Rapolas Daugintis, to study whether the phenomenon was due to how we hear. Daugintis carried out measurements and simulations to test the idea, and Senior Researcher Timo Lähivaara from the University of Eastern Finland contributed acoustic and flow field simulations.  

Their results were surprising but simple: it’s harder for people to hear themselves when shouting upwind. 

‘When someone shouts upwind, their ears are situated downwind from their mouth, which means that their ears receive less sound – it’s harder from them to hear their shout than when there’s no wind,’ says Pulkki.

The same thing happens when someone is moving quickly even if there’s no wind blowing – if you’re cycling, for example. As a person bikes, their motion generates a wind around their head even in stationary air, and they end up shouting because they can’t hear their own voice well. 

Ville Pulkki ja Rapolas Daugintis
Professor Ville Pulkki (left), photo: Nita Vera/Aalto University and Rapolas Daugintis, photo: Ira Matilainen/Aalto University

So be careful what you shout upwind, for others might hear you just fine, even if you don’t. This information is particularly useful for people who work with sound, such as musicians.

‘My musician friend told me that when they have to sing on a sailboat, they always sit with their back against the wind in order to not strain their voice. The same phenomenon is at play here: because it’s harder for my friend to hear themself when singing upwind, it makes them unknowingly sing louder than usual,’ says Pulkki. 

Further information:

Professor Ville Pulkki
ville.pulkki@aalto.fi
+358 50 520 8392

Read more

Aalto University Acoustic Lab

Aalto Acoustics Lab

The Aalto Acoustics Lab is a multidisciplinary research center focusing on audio processing and spatial sound technologies. The laboratory gathers professors and research teams from three different units: Department of Information and Communications Engineering, Department of Computer Science, and Department of Art and Media.

Muovinen tutkimuksessa käytetty pää, johon on kiinnitetty mikrofoni.

New technology conveys the direction of sounds through hearing aids

A new signal processing model enables both accurate spatial sound reproduction and sound adjustment for people with hearing loss

News
Superkuulon toteuttava laite. Pallon pinnalla on kuusi ultraäänille herkkää mikrofonia. Ultraäänet toistetaan kuulokkeisiin niin, että kuulija havaitsee äänilähteen suunnan oikein. Kuva: Ville Pulkki / Aalto-yliopisto

Anyone can get super-hearing

New audio technique can track bats in flight and help localise sources of ultrasonic sound.

News
Aalto University/The Acoustics Lab/Michael McCrea and Rapolas Daugintis/image: Ira Matilainen

Lots of modelling and freedom to explore – summer job in the Acoustics Lab

How could you listen to only one sound in a noisy room? How does your voice change when you shout into the wind? Michael McCrea and Rapolas Daugintis, the summer workers at the Acoustics Lab, are looking for answers to these questions

News
  • Updated:
  • Published:
Share
URL copied!

Read more news

An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)
Forest with green mossy ground and thin trees, a square measuring frame is set on the moss.
Press releases Published:

Satellite images reveal the positive effects of restoration in the northern hemisphere peatlands

Satellite data spanning over 20 years shows that the temperature and albedo of restored peatlands begin to resemble those of intact peatlands within about a decade
Close-up of a glowing dual processor on a dark motherboard with futuristic light effects and detailed circuitry.
Press releases, Research & Art Published:

New quantum record: Transmon qubit coherence reaches millisecond threshold

The result foreshadows a leap in computational capabilities, with researchers now inviting experts around the globe to reproduce the groundbreaking measurement.