Global and local aspects of the surface potential landscape for energy level alignment at organic-ZnO interfaces
Hybrid systems of organic and inorganic semiconductors are a promising route for the development of novel opto-electronic and light-harvesting devices. A key ingredient for achieving a superior functionality by means of a hybrid system is the right relative position of energy levels at the interfaces of the two material classes. In this Perspective, we address the sensitivity of the potential energy landscape at various ZnO surfaces, a key ingredient for interfacial energy level alignment, by combining one- and two-photon photoelectron spectroscopy with density-functional theory calculations (DFT). We show that even very large work function changes (>2.5 eV) do not necessarily have to be accompanied by surface band bending in ZnO. Band bending – if it does occur – may be localized to few Å or extend over hundreds of nanometers with very different results for the surface work function and energy level alignment. Managing the delicate balance of different interface manipulation mechanisms in organic–inorganic hybrid systems will be a major challenge towards future applications. Read more .
Read more news

Aalto computer scientists in STOC 2025
Two papers from Aalto Department of Computer Science were accepted to the Symposium on Theory of Computing (STOC).
New Academy Research Fellows and Academy Projects
A total of 44 Aalto researchers received Academy Research Fellowship and Academy Project funding from the Research Council of Finland – congratulations to all!
Aalto University's Wood Studio's future visions of Finland's most valuable wood are presented at the Finnish Forest Museum Lusto
Curly birch – the tree pressed by the devil – exhibition will be on display in Lusto until March 15, 2026.