91ÇàÇà²Ý

News

ERC funding to Assistant Professor Junhe Lian to explore new materials via advanced manufacturing

Assistant professor Junhe Lian's goal is to develop an efficient, digital, and ecologically sustainable method for developing new materials and advanced manufacturing technologies with the help of the ERC Starting Grant.
Professori Junhe Lian
Professor Junhe Lian

Industrial 3D printing, i.e. the additive manufacturing method, is an economical option when it comes to manufacturing a complex part. On the other hand, the material properties of a 3D printed product are not necessarily of uniform performance, retarding certain implementations of its outcomes, yet enabling active leverage of the material properties with unparalleled flexibility for multi-functional design. 

Professor Junhe Lian's research project HIGMAM – Hierarchical gradient metals by additive manufacturing – aims high: the goal of the five-year project is to develop a fundamental understanding of the interplay between materials and manufacturing for this emerging field and eventually to offer an efficient, digital and ecologically sustainable way to develop new materials and manufacturing techniques. 

’We discovered by chance in our research group that additive manufacturing can produce completely new microstructures in the material, which in addition to simple microstructure features, also has hierarchical gradient structures of different sizes and even lattice distortions. It preserves the material's strength properties but makes the materials tougher compared to traditional microstructures,’ says Junhe Lian.

Over the past decade, research has shown that organic-looking shapes can maintain the strength and toughness of engineering materials without compromise. ’Currently, in the engineering domain, we can only develop materials with limited design space and rule of physics,’ the professor adds. 

’With the help of the additive manufacturing method and eventually more general manufacturing methods, we can systematically study the possibilities and limits of the new microstructures. Through complex research combining multiple scales and the laws of physics, we aim to develop a systematic approach to the design of the new microstructures. The research will delve into fundamental experimental research, multiscale characterization methods, multiphysics, and multi-scale numerical models, as well as the utilization of data science,’ promises Professor Lian.

’We have been studying the possibilities brought by the additive manufacturing method for a long time. With the help of Junhe Lian's excellent analytical modeling skills, we can expand the research to a whole new level,’ says Jouni Partanen, Professor of Advanced Production Methods at the Department of Mechanical Engineering.

  • Updated:
  • Published:
Share
URL copied!

Read more news

Alusta pavilion. Photo: Elina Koivisto
Campus, Research & Art Published:

Alusta pavilion moved to the Aalto Campus

The giant insect hotel, Alusta pavilion invites pollinators and other species, also humans to get together.
Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, September 2025

Sign-up to be a tutor for new doctoral students as part of the Aalto Doctoral Orientation Days!
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.